Data Sheet, Rev. 2.0, Jan. 2005

TLE 6258-2 LIN Transceiver

Automotive Power

Never stop thinking.

Edition 2005-01-13 Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München, Germany © Infineon Technologies AG 2004. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

TLE 6258-2

LIN Transceiver

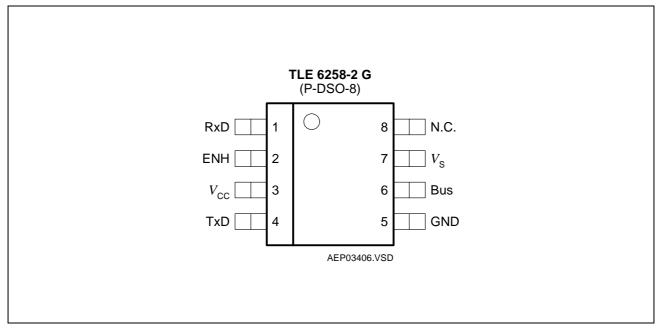
Features

- Single-wire transceiver, suitable for LIN protocol
- Compatible to LIN specification 1.2, 1.3 and 2.0
- Compatible to ISO 9141 functions
- Transmission rate up to 20 kBaud
- Very low current consumption in stand-by mode
- Wake-up from Bus
- Short circuit proof to ground and battery
- Overtemperature protection

Description

P-DSO-8-3, -6, -7, -8, -9

The single wire transceiver TLE 6258-2 is a monolithic integrated circuit in a P-DSO-8-3 package. It works as an interface between the protocol controller and the physical bus. The TLE 6258-2 is especially suitable to drive the bus line in LIN systems in automotive and industrial applications. Further it can be used in standard ISO9141 systems.


In order to reduce the current consumption the TLE 6258-2 offers a stand-by mode. A wake-up caused by a message on the bus sets the RxD output low until the device is switched to normal operation mode.

The IC is based on the Smart Power Technology SPT[®] which allows bipolar and CMOS control circuitry in accordance with DMOS power devices existing on the same monolithic circuit.

The TLE 6258-2 is designed to withstand the severe conditions of automotive applications.

Туре	Ordering Code	Package
TLE 6258-2 G	Q67006-A9695	P-DSO-8-3

Figure 1 Pin Configuration (top view)

Table 1	Pin De	Definitions and Functions		
Din No	Symbol	Eurotion		

Pin No.	Symbol	Function
1	RxD	Receive data output; integrated pull-up, LOW in dominant state
2	ENN	Enable not input; integrated 30 k Ω pull-up, transceiver in normal operation mode when LOW
3	V _{CC}	5 V supply input
4	TxD	Transmit data input; integrated pull-up, LOW in dominant state
5	GND	Ground
6	Bus	Bus output/input; internal 30 k Ω pull-up, LOW in dominant state
7	Vs	Battery supply input
8	n.c.	Not connected

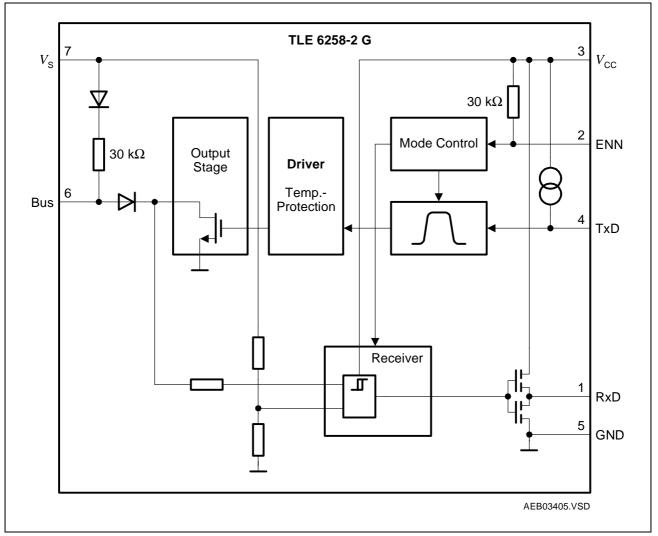
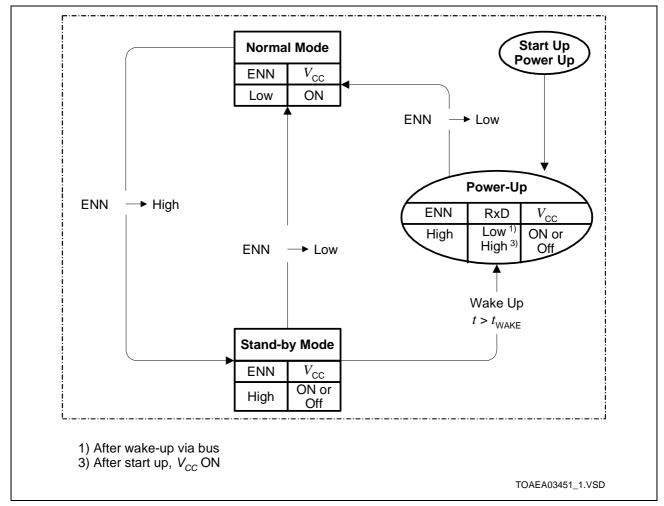



Figure 2 Functional Block Diagram

Application Information

Figure 3 State Diagram

For fail safe reasons the TLE 6258-2 has already a pull-up resistor of 30 k Ω implemented. To achieve the required timings for the dominant to recessive transition of the bus signal an additional external termination resistor of 1 k Ω is required. It is recommended to place this resistor in the master node. To avoid reverse currents from the bus line into the battery supply line in case of an unpowered node, it is recommended to place a diode in series to the external pull-up. For small systems (low bus capacitance) the EMC performance of the system is supported by an additional capacitor of at least 1 nF in the master node (see Figure 6).

In order to reduce the current consumption the TLE 6258-2 offers a stand-by mode. This mode is selected by switching the Enable Not (ENN) input high (see Figure 3). In the stand-by mode a wake-up caused by a message on the bus is indicated by setting the RxD output low. When entering the normal mode this wake-up flag is reset and the RxD output is released to transmit the bus data.

Parameter	Symbol	Limit	Values	Unit	Remarks
		Min.	Max.		
Voltages					
Supply voltage	V _{CC}	-0.3	6	V	-
Battery supply voltage	Vs	-0.3	40	V	-
Bus input voltage	$V_{\rm bus}$	-20	32	V	-
Bus input voltage	$V_{\rm bus}$	-20	40	V	<i>t</i> < 1 s
Logic voltages at EN, TxD, RxD	VI	-0.3	V _{CC} + 0.3	V	0 V < V _{CC} < 5.5 V
Electrostatic discharge voltage at $V_{\rm S}$, Bus	V_{ESD}	-4	4	kV	human body mode (100 pF via 1.5 kΩ)
Electrostatic discharge voltage	V_{ESD}	-2	2	kV	human body mode (100 pF via 1.5 kΩ)
Temperatures		•	•	•	
Junction temperature	T _i	-40	150	°C	_

Table 2Absolute Maximum Ratings

Note: Maximum ratings are absolute ratings; exceeding any one of these values may cause irreversible damage to the integrated circuit

Table 3Operating Range

Parameter	Symbol	Limit	Values	Unit	Remarks
		Min.	Max.		
Supply voltage	V _{CC}	4.5	5.5	V	_
Battery Supply Voltage	Vs	6	35	V	-
Junction temperature	Tj	-40	150	°C	-
Thermal Shutdown (juncti	on temperat	ure)			•
Thermal shutdown temp.	T_{jSD}	150	170	190	°C
Thermal shutdown hyst.	ΔT	_	10	-	К
Thermal Resistances	L	•	•	•	
Junction ambient	R _{thj-a}	-	185	K/W	_

Table 4 Electrical Characteristics

Parameter	Symbol	Li	Limit Values			Remark
		Min.	Тур.	Max.		
Current Consumption						·
Current consumption	I _{CC}	_	0.4	0.7	mA	recessive state; $V_{\text{TxD}} = V_{\text{CC}}$
Current consumption	I _S	_	0.5	1.0	mA	recessive state; $V_{\text{TxD}} = V_{\text{CC}}$
Current consumption	I _{CC}	_	0.4	0.8	mA	dominant state; $V_{TxD} = 0 V$; without R
Current consumption	Is	-	1.3	2.0	mA	dominant state; $V_{TxD} = 0 V$; without R
Current consumption	I _{CC}		0.4	0.7	mA	power-up mode
Current consumption	I _S	-	0.5	1.0	mA	power-up mode, $V_{\rm CC}$ = 0 V, $V_{\rm S}$ = 13.5 V
Current consumption	I _{CC}	1	3	10	μA	stand-by mode
Current consumption	Is	_	18	40	μA	stand-by mode

Table 4Electrical Characteristics (cont'd)

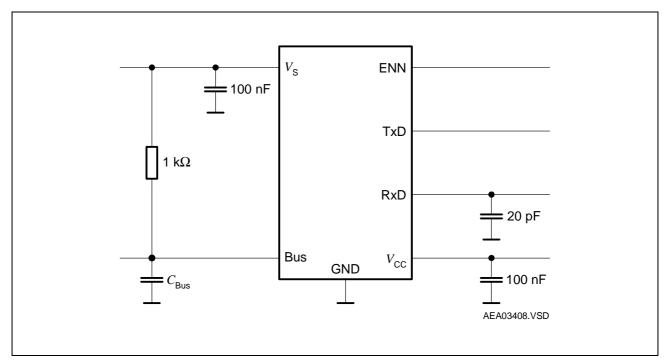
Parameter	Symbol	Lir	nit Val	ues	Unit	Remark
		Min.	Тур.	Max.		
Enable Not Input (pin EN	N)					
HIGH level input voltage threshold	$V_{ENN,off}$	-	2.8	$0.7 \times V_{\rm CC}$	V	low power mode
LOW level input voltage threshold	$V_{ENN,on}$	$0.3 imes V_{ m CC}$	2.2	-	V	normal operation mode
ENN input hysteresis	$V_{\rm ENN,hys}$	300	600	900	mV	-
ENN pull-up resistance	R _{ENN}	15	30	60	kΩ	-
Receiver Output RxD				1		
HIGH level output current	I _{RD,H}	-1.2	-0.8	-0.5	mA	$V_{\rm RD}$ = 0.8 $ imes$ $V_{\rm CC}$
LOW level output current	I _{RD,L}	0.5	0.8	1.2	mA	$V_{\rm RD}$ = 0.2 × $V_{\rm CC}$
Transmission Input TxD						
HIGH level input voltage threshold	$V_{TD,H}$	_	2.9	$0.7 imes V_{ m CC}$	V	recessive state
TxD input hysteresis	$V_{\mathrm{TD,hys}}$	300	700	900	mV	-
LOW level input voltage threshold	$V_{TD,L}$	$0.3 imes V_{ m CC}$	2.1	-	V	dominant state
TxD pull-up current	I _{TD}	-150	-110	-70	μA	$V_{\text{TxD}} < 0.3 \times V_{\text{CC}}$

Table 4 Electrical Characteristics (cont'd)

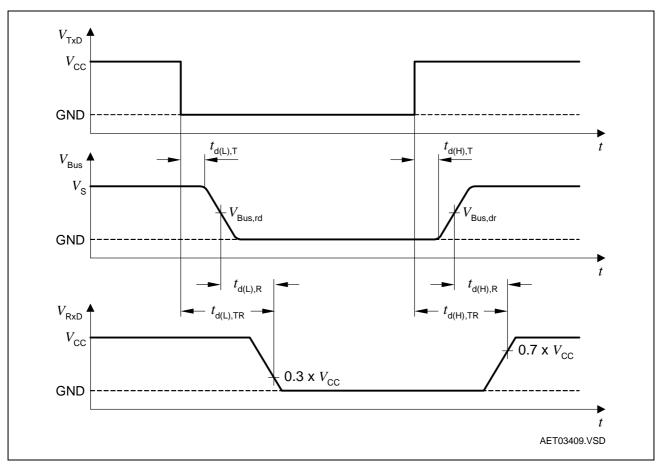
Parameter	Symbol	Lir	nit Val	ues	Unit	Remark	
		Min.	Тур.	Max.			
Bus Receiver							
Receiver threshold voltage, recessive to dominant edge	V _{bus,rd}	$0.44 \times V_{\rm S}$	$0.48 \times V_{\rm S}$	_	V	-8 V < $V_{\rm bus}$ < $V_{\rm bus,dom}$	
Receiver threshold voltage, dominant to recessive edge	$V_{ m bus,dr}$	_	$0.56 \times V_{\rm S}$	$0.6 imes V_{ m S}$	V	$V_{\rm bus,rec}$ < $V_{\rm bus}$ < 20 V	
Receiver hysteresis	$V_{\rm bus,hys}$	$0.02 \times V_{\rm S}$	$0.04 \times V_{\rm S}$	$0.1 \times V_{ m S}$	mV	$V_{ m bus,hys}$ = $V_{ m bus,rec}$ - $V_{ m bus,dom}$	
Receiver threshold center voltage	$V_{ m bus,cnt}$	$0.475 \times V_{\rm S}$	$0.5 \times V_{ m S}$	$0.525 \times V_{ m S}$		LIN2.0 table 3.1	
Input leakage current	I _{bus,lek}	-1			mA	$V_{\rm bus}$ = 0V, $V_{\rm bat}$ = 12V, pull-up resistor as specified in LIN2.0	
Wake-up threshold voltage	$V_{\sf wake}$	$0.40 \times V_{\rm S}$	$0.5 imes V_{ m S}$	$0.6 imes V_{ m S}$	V	_	
Bus Transmitter					•		
Bus recessive output voltage	V _{bus,rec}	$egin{array}{c} 0.9 imes V_{ m S} \end{array}$	_	V _S	V	$V_{TxD} = V_{CC}$	
Bus dominant output voltage	$V_{\rm bus,dom}$	0	-	2	V	$V_{\text{TxD}} = 0 \text{ V}$ 7.3V <v<sub>S<27V</v<sub>	
		0	-	1.2	V	$V_{TxD} = 0 V$ 6V <v<sub>S<7.3V</v<sub>	
Bus short circuit current	$I_{\rm bus,sc}$	40	100	150	mA	$V_{\rm bus, short}$ = 13.5 V	
Leakage current	I _{bus,lk}	-1	-	_	mA	$\label{eq:V_CC} \begin{split} V_{\rm CC} &= 0 \ {\rm V}, \ V_{\rm S} = 0 \ {\rm V}, \\ V_{\rm bus} &= -8 \ {\rm V}, \end{split}$	
		-	10	20	μA	$V_{\rm CC} = 0 \text{ V},$ $V_{\rm S} = 13.5 \text{V},$ $V_{\rm bus} = 20 \text{ V},$	
Bus pull-up resistance	R _{bus}	20	30	47	kΩ	–	

Table 4Electrical Characteristics (cont'd)

Parameter	Symbol	Li	mit Val	ues	Unit	Remark	
		Min.	Тур.	Max.			
Dynamic Transceiver Ch	aracteris	tics					
Falling edge slew rate	S _{bus(L)}	-3	-2.0	-1	V/µs	¹⁾ 60% > V_{bus} > 40% 1 µs < ($\tau = R_L \times C_{BUS}$) < 5 µs V_{CC} = 5 V; V_S = 13.5 V	
Rising edge slew rate	S _{bus(H)}	1	1.5	3	V/µs	¹⁾ 40% < V_{bus} < 60% 1 µs < ($\tau = R_L \times C_{BUS}$) < 5 µs V_{CC} = 5 V; V_S = 13.5 V	
Slope symmetry	t _{slopesym}	5		-5	μs	$t_{\rm fslope}$ - $t_{\rm rslope}$ $V_{\rm S}$ = 18 V	
Propagation delay TxD LOW to bus	$t_{d(L),T}$	-	1	3	μs	$V_{\rm CC}$ = 5 V	
Propagation delay TxD HIGH to bus	$t_{d(H),T}$	-	1	3	μs	$V_{\rm CC}$ = 5 V	
Propagation delay bus dominant to RxD LOW	$t_{d(L),R}$	-	1	6	μs	$V_{\rm CC}$ = 5 V; $C_{\rm RxD}$ = 20 pF	
Propagation delay bus recessive to RxD HIGH	t _{d(H),R}	-	1	6	μs	$V_{\rm CC}$ = 5 V; $C_{\rm RxD}$ = 20 pF	
Receiver delay symmetry	t _{sym,R}	-2	-	2	μs	$t_{\text{sym,R}} = t_{d(L),R} - t_{d(H),R}$	
Transmitter delay symmetry	t _{sym,T}	-2	-	2	μs	$t_{\text{sym},\text{T}} = t_{\text{d}(\text{L}),\text{T}} - t_{\text{d}(\text{H}),\text{T}}$	
Duty cycle D1	t _{duty1}	0.396	_	-	μs	duty cycle 1 ¹⁾ $TH_{Rec}(max) = 0.744 \times V_S;$ $TH_{Dom}(max) = 0.581 \times V_S;$ $V_S = 7.0 \dots 18 V;$ $t_{bit} = 50 \ \mu s;$ $D1 = t_{bus_rec(min)}/2 \ t_{bit};$	
Duty cycle D2	t _{duty2}	-	_	0.581	μs	duty cycle 2 ¹⁾ $TH_{Rec}(max) = 0.422 \times V_S;$ $TH_{Dom}(max) = 0.264 \times V_S$ $V_S = 7.6 \dots 18 V;$ $t_{bit} = 50 \ \mu s;$ $D2 = t_{bus_rec(max)}/2 \ t_{bit};$	


Table 4Electrical Characteristics (cont'd)

4.5 V < V_{CC} < 5.5 V; 6.0 V < V_{S} < 27 V; R_{L} = 500 Ω ; V_{ENN} < $V_{ENN,ON}$; -40 °C < T_{j} < 125 °C; all voltages with respect to ground; positive current flowing into pin; unless otherwise specified.


Parameter	Symbol	Limit Values			Unit	Remark
		Min.	Тур.	Max.		
Wake-up delay time	t _{wake}	30	100	150	μs	<i>T</i> _j < 125 °C
				170	μs	<i>T</i> _j < 150 °C
Delay time for mode change	t _{snorm}			50	μs	

1) Bus load conditions concerning LIN spec 2.0 C_{bus} , R_{bus} = 1 nF, 1 k Ω / 6.8 nF, 660 Ω / 10 nF, 500 Ω

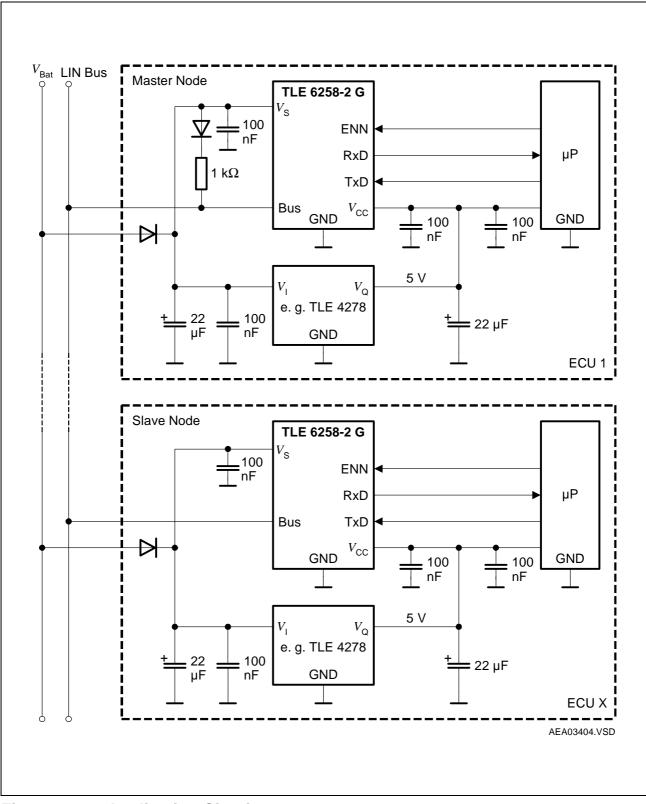


Figure 5 Timing Diagram for Dynamic Characteristics

Application

Figure 6 Application Circuit

Package Outlines

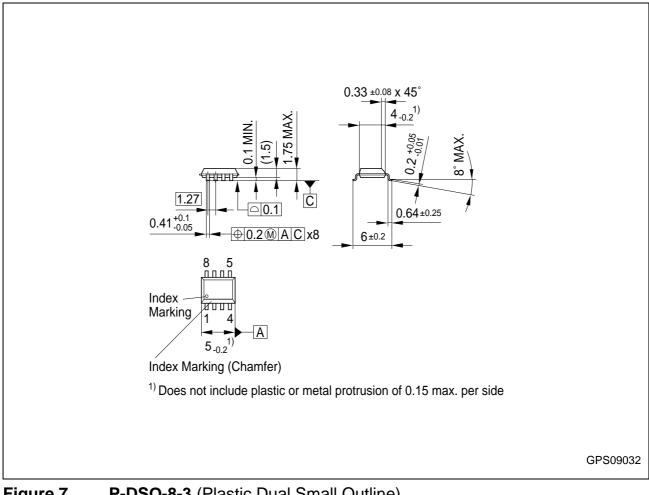


Figure 7 P-DSO-8-3 (Plastic Dual Small Outline)

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products.

SMD = Surface Mounted Device

Dimensions in mm